Reproducing Compound TCP
CS244 Project, Spring 2018

Jaspreet Kaur

Jjaspreetkaur@stanford.edu

Abstract

As the world becomes more interconnected, the impor-
tance of high speed and long distance networks is increas-
ing. There is more focus on scalability than ever before.
The standard TCP is unable to utilize the network capac-
ity fully due to its conservative ”Additive Increase Mul-
tiplicative Decrease”(AIMD) algorithm. This project is
based on reproducing the results of the paper on Com-
pound TCP algorithm. Compound TCP overcomes the
conservative nature of the TCP algorithm by combining
the loss and delay based congestion control approaches.
Hence, it can perform much better for high speed and long
distance networks. This can be achieved by adding a scal-
able delay based component to the standard TCP.

In this reproduction paper, we reproduce Table 1 and
Figure 8 from the CTCP paper [8]. These figures describe
the throughput of CTCP under different network condi-
tions, and compare its performance to TCP. Our results
are qualitatively consistent with the original paper, though
our throughput measurements for both CTCP and TCP are
lower.

1 Introduction

Transmission Control Protocol (TCP) defines how com-
puters send packets of data to each other and maintain the
network. Congestion occurs when system load is greater
than the system resources. Congestion control is a very in-
teresting topic from a network engineer point of view and
we were very interested in exploring this area in more de-
tail. Hence, we decided to reproduce this paper on CTCP
congestion control.

TCP has embedded congestion control algorithm with

Tucker Leavitt

tuckerl@stanford.edu

additive increase of window size when there is no con-
gestion and multiplicative decrease when there conges-
tion. This has been described by [1] with multiplicative
decrease factor of 0.5. TCP considers packet loss as a
measure of congestion, hence it is considered a loss based
congestion control algorithm. Conventionally, three du-
plicate ACK’s or a retransmission timeout is considered
as packet loss.

The TCP Congestion Control algorithm is considered
very conservative for high speed and long distance net-
works. This is because for TCP to effectively utilize avail-
able bandwidth, it requires a window size roughly equal
to the Bandwidth Delay Product (BDP). Even in an ideal
link with no packet loss, it will take TCP a long time to
increase it’s window size for full utilization of the band-
width. In a real world situation, TCP may never achieve a
high enough window size. This is because TCP only in-
creases its window size by one every RTT time. It has
been shown that the average TCP window is inversely
proportional to the square root of the packet loss rate[7].

There have been some approaches to overcome this be-
havior by introducing TCP slow start and higher mul-
tiplicative factors for more aggressive link utilization.
The algorithms which utilize packet loss as a measure of
congestion are known as “loss based” Congestion Con-
trol(CC) algorithms . There are also certain algorithms
that used a delay based approach to CC and reduce trans-
mission rate based on RTT variations. There are draw-
backs and advantages to both these approaches. Hence,
we decided to implement the algorithm that uses the best
of both worlds. CTCP uses a combination of loss based
and delay based approaches and provides us the benefit
of efficiency, RTT fairness and TCP fairness. The delay
based component in CTCP can efficiently use link capac-
ity as well as detect congestion by sensing changes to the

RTT.

Our goal is to reproduce Table 1 and Figure 8 from
[8]. Table 1 shows the throughput of CTCP and TCP Reno
under burst background traffic, and Figure 8 shows the
utilization of CTCP and TCP and different link loss rates.

2 Related Work

While designing a congestion control algorithm for
wired, high-speed, long-distance connections, there are
three primary performance metrics to consider: through-
put/utilization, RTT fairness and TCP fairness. A new
congestion control algorithm must efficiently utilize the
network bandwidth, must have good intra protocol fair-
ness for competing flows with different RTT’s and ensure
TCP fairness by not stealing bandwidth from other TCP
flows.

CTCP was first proposed in 2005 [8], along with sev-
eral other new congestion control algorithms designed
to utilize high-speed links more efficiently. Some algo-
rithms, like HSTCP[2], STCP[4] and BIC-TCP[10], were
primarily loss based. These algorithms achieve high ef-
ficiency but lead to RTT and TCP unfairness. HSTCP
needs larger amount of background traffic and more vari-
able traffic than other protocols to achieve convergence
[3]. On the other hand, delay based algorithms such as
FAST [9], achieve high efficiency and RTT fairness but
suffer from TCP unfairness especially if most flows are
loss based. This is because delay based flows will re-
duce sending rate when queue is built to prevent self in-
duced packet losses. This will trigger loss based flows
to increase sending rate since they now observe lower
packet loss rates, hence causing TCP unfairness. The de-
lay based approaches try to maintain a fixed buffer occu-
pancy. FAST suffers from unfairness especially in net-
works with small buffer sizes or networks with long delay
as shown experimentally in [3].

TCP Africa[S] combines both aggressive increase in
window size (implemented in loss based CC’s) and ad-
ditive increase(implemented in TCP). It uses delay infor-
mation to switch between both these modes.

CTCP was developed by Microsoft and is part of the
Windows Vista and Window Server 2008 TCP stack. In
the decade since CTCP’s release, several other sophisti-
cated congestion control algorithms have been developed,

such as CUBIC, BBR, Remy, and PCC.

3 System Design

Our system implementation can be found here:
https://github.com/tleavitt/sourdough!

Our goal was to reproduce the TCP and CTCP through-
put measurements in Table 1 and Figure 8 of [8]. Table 1
measures the throughput of a congestion control sender
and receiver under “burst background traffic,” which they
define as constant-rate traffic that toggles on and off ev-
ery 10 seconds. The authors did not specify what network
topology they used to create this traffic. Other works (e.g.
[3]) have used a bow-tie topology for performing through-
put measurements in the presence of background traffic,
so we did the same. Figure 1 shows the topology. Send
and Recv are the CTCP sender and receiver, X1 and X2
are hosts exchanging UDP traffic, and the blank nodes are
switches.

We simulated the bow-tie topology using the Mahimahi
link emulator. We mostly used the mm-delay and mm-
loss attributes implemented in the Mahimahi emulator [6].
The loss introduced using mm-loss was used to introduce
packet loss rate from 106 to 10~2. This was used in the
reproduction of Figure 8 in the CTCP paper. The mm-
delay attribute was used to specify the propagation delay
in one direction. The CTCP paper uses a delay of 100ms
but we used a delay of 40ms for our implementation.

We implement a socket sender and receiver framework
that transmits UDP packets and has a pluggable “conges-
tion controller” that modulates the sender window size.
Our initial thought was to use Mininet to build this topol-
ogy, but we could not get both Mininet and Sourdough to
work on the same machine. We could only get Mininet
to install on the pre-built VirtualBox Ubuntu 14.04 im-
age, and we received socket errors when trying to run the
sender from Programming Assignment 1 of CS 244 on
this machine.

We decided to modify the topology so that we could run
the experiments on a single Mahimahi link. Essentially,
we collapsed the CTCP and UDP clients into a single host

I'The accompanying data analysis notebook can be found at ht t ps :
//github.com/tleavitt/ctcp-data-analysis

= S

Figure 1: Simulated network topology used for through-
put measurements. Send and Recv are the congestion con-
trol nodes. X1 and X2 are the cross traffic nodes.

that multiplexes the two streams over the bottleneck link.
The final topology is shown in the Figure 2 below.

Figure 2: Simplified network topology used for through-
put measurements.

We initially planned on using Iperf for generating the
UDP traffic but changed it considering that Iperf uses TCP
and not UDP. We implemented background traffic using a
simple socket client that injects packets into the network
at constant time intervals. Additionally, it turns on and off
for 10 seconds, as in the CTCP paper.

We implemented CTCP according to the specifications
in [8] and TCP Reno according to RFC 2581. Our im-
plementation lacks many of the features that a production
CC algorithm would have, but it has the correct long-term
and qualitative behavior. The implementation is available

at our github repo.

The CTCP paper uses drop tail queues, but there is not
an easy way to implement these using Mahimahi. Hence,
to simulate the behavior of a drop tail queue at the bottle-
neck, we programmed the sender to label a packet that
has been delayed by more than a threshold amount as
“dropped.” To simulate a drop-tail queue of size B, the
delay threshold D gyeqe should be:

B
uneue = E - Dprop

where R is the bottleneck link rate and Dy, is the
round-trip propagation delay. In the paper, they used
queues of size B = 18Mb. We had R = 240Mbps and
Dyrop = 40ms, which gives Dgyeue = 35ms The au-
thors used a bottleneck link speed of 700 Mbps consider-
ing their router CPU bottleneck limitations and used burst
UDP traffic rates of 50 Mbps, 100 Mbps, 150 Mbps and
200 Mbps for Tablel. However, considering limitations of
our system, we have kept the bottleneck link speed as 240
Mbps. Accordingly, we have scaled our burst UDP rates
to 17 Mbps, 34 Mbps, 51 Mbps and 68 Mbps accordingly.

CTCP has several hyperparameters, as specified in [8].
We found empirically that the following hyperparameters
worked well: « = 1,8 = 0.3,7 = 30, = 0.02 and
k=0.1.

CTCP falls back to the standard TCP implementation
when the window size is small. However, one the delay
based component is active, the window size increases by
at least one MSS every RTT.

4 Evaluation

Table 1 compares CTCP and TCP Reno for different burst
background traffic rates. We observe that TCP utiliza-
tion drops significantly (from 60.21% to 43.13%) as the
background traffic rate increases. However, the utilization
of CTCP varies very less(between 58.09% to 63.60%).
This behavior matches the qualitative behavior of TCP
and CTCP in the original paper.

However, in the CTCP paper the link utilizations for
TCP and CTCP were higher; CTCP had a utilization of
almost 90% for all background rates. We suspect this has
two causes: our implementation does not include most of
the performance enhancements and optimizations that a

real CC implementation would, and our algorithm hyper-
parameters are probably not tuned optimally. 200
4
2 1501
Cross-traffic =
Rate 17 Mbps | 34 Mbps | 51 Mbps | 68 Mbps § -
o
139.33 130.02 92.49 95.19 |3
TCP-Reno | 60219 | 58.18% | 43.13% | 46.23% [E 50
CTCP 146.89 138.16 125.00 130.62
63.45% | 59.59% | 58.09% | 63.60% 07~ , , . , ‘ ,
0 50 100 150 200 250 300
Time (s)

Table 1: Throughputs (in Mbps) and utilizations under
constant-rate cross-traffic over a 240 Mbps bottleneck
link.

0.6

— CICP

05 | TCP

0.4

031

Link Utilization

0.2 {

0.1

0.0+

le-4
Loss Rate

le-2 le-3 le-5 le-6

Figure 3: Percent utilization of the bottleneck link as a
function of link loss rate.

We can observe from Figure 3 that CTCP performs bet-
ter than normal TCP for varying loss rates. This is be-
cause CTCP has a more aggressive algorithm for increas-
ing the window size after occurrence of packet loss. This
behavior is also seen more clearly in Figures 4 and 5 be-
low. While TCP takes 125s to rise to a throughput of 200
Mbps, CTCP is able to achieve the same throughput in
around 50s.

Figure 4: Instantaneous throughput for a long-lived TCP
connection over a 240 Mbps link with 34 Mbps back-
ground cross traffic .

200

n 150
Qo
3

3 100
L
()]
=
2

£ 50
[

0

0 50 100 150 200 250 300 350
Time (s)

Figure 5: Instantaneous throughput for a long-lived CTCP
connection with identical conditions to figure 4. The av-
erage throughput is higher, and the loss events are more
frequent.

5 Conclusion

We were successfully able to implement Table 1 and Fig-
ure 8 from the CTCP paper and get similar qualitative re-
sults. Our results show that CTCP does indeed perform
better than TCP for high speed and long distance links.
Performance optimizations in our CTCP implementation
to match the CTCP implementation in the paper would

allow us to match the results quantitatively as well.

6 Future Work

Possible extensions of this project could include com-
paring CTCP with one loss based approach like HSTCP
and one delay based approach like FAST. Additionally,
it would be really interesting to observe TCP fairness
and RTT fairness experimentally for CTCP and their ab-
sence in HSTCP or FAST. This would mean experimen-
tally measuring the stolen bandwidth in all three cases.
However, this would require more complicated network
structure and might require the use of a router implemen-
tation.

Another possible extension of this project could be test-
ing the Windows implementation of the CTCP and com-
paring observed throughputs against our implementation.

7 Acknowledgements

We would like to thank Professor Nick Mckeown, Profes-
sor Keith Winstein and TA’s Saachi Jain and Emre Om-
bray for their valuable insights throughout the project.
We thoroughly enjoyed working on this project and it
was a great learning experience for us. (Special thanks
to Keith for his work on the Sourdough congestion con-
troller framework and the Mahimabhi link emulator.)

References

[1] Mark Allman, Vern Paxson, and Ethan Blanton.
TCP congestion control. Tech. rep. 2009.

[2] Sally Floyd. “HighSpeed TCP for large congestion
windows”. In: (2003).

[3] Sangtae Ha et al. “Impact of background traffic on
performance of high-speed TCP variant protocols”.
In: Computer Networks 51.7 (2007), pp. 1748-
1762.

[4] Tom Kelly. “Scalable TCP: Improving perfor-
mance in highspeed wide area networks”. In: ACM
SIGCOMM computer communication Review 33.2
(2003), pp. 83-91.

(5]

(6]

(7]

(8]

(9]

[10]

Ryan King, Richard Baraniuk, and Rudolf Riedi.
“TCP-Africa: An adaptive and fair rapid increase
rule for scalable TCP”. In: INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE.
Vol. 3. IEEE. 2005, pp. 1838-1848.

Ravi Netravali et al. “Mahimahi: Accurate Record-
and-Replay for HTTP.” In:

Jitendra Padhye et al. “Modeling TCP throughput:
A simple model and its empirical validation”. In:
ACM SIGCOMM Computer Communication Re-
view 28.4 (1998), pp. 303-314.

Kun Tan et al. “A compound TCP approach
for high-speed and long distance networks”. In:
Proceedings-IEEE INFOCOM. 2006.

David X Wei et al. “FAST TCP: motivation, archi-
tecture, algorithms, performance”. In: IEEE/ACM
transactions on Networking 14.6 (2006), pp. 1246—
1259.

Lisong Xu, Khaled Harfoush, and Injong Rhee.
“Binary increase congestion control (BIC) for
fast long-distance networks”. In: INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies. Vol. 4.
IEEE. 2004, pp. 2514-2524.

