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1 INTRODUCTION

Software defined networks (SDNs) offer a greatly different
approach to networking than traditional networks. In SDNs,
the control plane is separated from the data plane; moving
from the switches to a central controller. This can result
in the movement of what was once distributed state into
this central location. A particular class of state, referred to
as identifier bindings, and how it can be exploited in this
nascent technology is explored in the paper "Identifier Bind-
ing Attacks and Defenses in Software-Defined Networks" by
Jero et al. [10].

‘Identifier bindings’ are simply how different identifiers
that refer to the same entity, such as MAC and IP addresses,
are associated with each other. It is through these bindings
that allow for the layering of protocols, and gives users the
assurance that messages reach their intended target. For in-
stance, in a network, when a host pings a specific IP address,
it will be routed to a machine with that IP. In reality, the host
is pinging the IP that goes to the MAC address that the net-
work believes is bound to the IP (perhaps via ARP), and that
MAC address actually corresponds to the device the sender
actually wanted to reach. The aforementioned paper lists
the different bindings as network location to device, MAC
to location, IP to MAC, host name to IP, and username to
hostname.

Many attacks exist focus on disrupting these bindings to
accomplish things as drastic as impersonations, such as ARP
spoofing (altering a MAC-IP binding), or as simple as eaves-
dropping, such as MAC flooding (removing MAC-IP binding).
The paper that I will be examining makes the claim that the
attacks are more severe in SDNs than in traditional networks
due to three key differences: the presence of security mecha-
nisms, rule consistency, and the location of the control plane.
The first two are not nearly as important as the third one.

The first one simply notes how in traditional networks,
the standard siwtches and routers that one can buy already
have protective measures in place, while for SDNs, the onus
of protection has been moved to the controller, and since
current open source implementations of these controllers
do not offer comprehensive defense, are easily susceptible
to this class of attack. This affects the frequency of success
that these attacks can, and as the technology develops, will
become less of a problem.

Regarding flow consistency, traditional networks are able
to update their routes quicker when a change in network is
detected, while in SDNs, routes are updated more slowly, as
they tend to be based on timeouts. This issue affects the ease

at which certain attacks can be implemented, as incorrect
rules to redirect traffic may be present longer in SDNs than
in traditional networks.

The most serious of differences is what makes SDNs unique:
their central controller. In traditional networks, because the
control plane and relevant state is distributed throughout
the network, attacks need to be more localized. However, in
an SDN, having a central location for the control state makes
it easier to both implement an attack, as the attacker can be
anywhere in the network, and to propagate its effects, as the
entire network is affected by its results. This can become
especially troublesome when the controller uses the state
for proactive routing, as once it has an incorrect binding, it
does not give the victim a chance to remedy this mistake.
Indeed, if the controller contains a table of IP-MAC bindings
and uses Proxy Arp, then if an attacker manages to replace
a victim’s IP-MAC binding with his own, the victim never
gets a chance to reply to an ARP request as he would in a
traditional network.

Due to these additional vulnerabilities in SDNs, the au-
thors explored how these identifier bindings can be exploited
in this type of environemnt and how to defend against them.
In particular, they introduce a new type of attack that they
dub "Persona Hijacking" that they claim allows an attacker to
takeover all network identifiers of a victim at once (MAC, IP,
and hostname), a more detailed discussion of which appears
below.

They then present a robust defense to all the different types
of identifier binding attacks that they call "SecureBinder".
This defense verifies that any changes to these bindings are
legitimate, uses source-address port filtering, and utilizing
802.1X to validate devices’ MAC addresses.

My goal is to be able to replicate the Persona Hijacking
attack to verify whether it can be as potent as they claim.
Furthermore, these experiments will be done using the POX
controller, which was untested in the paper but suggested to
be vulnerable, in order to demonstrate if it is as widespread
of an issue as they claim. Due to time constraints I will not
perform a formal evaluation of the weaknesses and security
of the controllers and their system via a model checker. While
I would have liked to implement the defenses as well, the
timing of writing what took them over 2000 lines of code in
addition to the attacks seemed slightly infeasible.

2 RELEATED WORK

As with anything, as SDNs get more popular, they can be-
come higher priority targets for attacks, especially due to its
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nascent nature and centralized control. To reduce the risks
of any such attacks before SDNs become widely deployed, a
fair amount of research has already been performed. Much of
these have been thoroughly explored in several research sur-
veys [2, 3, 11, 14]. Essentially, while the centralized controller
does provide greater flexibility, it opens up many exploitation
routes that have been well-studied, such as denial-of-service
[4].

Furthermore, the design of SDNs can lead to the introduc-
tion of exploitable race conditions. Xu et. al. were able to
demonstrate how the asynchronous nature of SDN allowed
for attacks similar to Time of Check to Time of Use ones that
could result in controller crash or service disruption [15].
For instance, they discovered that with appropriate timing
of the switch-join and switch-leave events in the floodlight
controller, they were able to trigger a Null-Poitner Exception.

But the work of security never ends. Indeed, in [2], the
authors recognize how the handling of identities is a pressing
issue, as there were no methods that could verify and bind
identities to the users. This lack of secure bindings has been
present in the standard internet architecture and has been
a major source of security issues, particularly with regards
to spoofing [13], and has been carried over to SDNs. Indeed,
it’s such an important issue that when designing a secure
SDN, the Open Networking Foundation has robust identity
as its second principle [1].

Indeed, without any proper protection in place, it is trivial
for an attacker to claim to have any IP or MAC address. Hong
et al. further demonstrate that it is possible for an attacker to
trick an SDN network into believing that a particular MAC
address has moved to a different network location, in what
they term network topology poisoning attacks [9]. This is
similar to ARP poisoning, but on a network scale.

In order to better secure these bindings, 802.1X was devel-
oped for traditional networks and has been been translated
over to the SDN world [7, 8, 10]. 802.1X refers to the Exten-
sible Authentication Protocol. In this protocol, before a host
can join a network, it must communicate to an authentica-
tion server via some authernticator and verify its identity
via some form of credentials, such as certificates. In these
works, the authentication server tends to be a RADIUS one,
and the authenticator is an application that communicates
with the controller.

To prevent the aformentioned network topology poison-
ing attacks, the Hong et al. developed their own authentica-
tion system, which eschews the 802.1X approach, and instead
actively probes and checks incoming topology changes to
verify them [9].
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3 THE ATTACK

The main idea behind the Persona Hijacking attack is that
an attacker is able to trick a network into believing that the
IP address of a victim now belongs to the attacker, down
to the IP-MAC binding. This attack is only effective if the
controller uses DHCP information for routing. Such a scheme
has been used before[5, 12], so there are real scenarios where
it can have an impact (granted the latter system employs an
authentication scheme that may make this particular attack
ineffective). Depending on the network setup, there are one
or two stages that need to take place.

The first is an ’IP takeover’ phase. During this, an attacker
tries to abuse the DHCP protocol in an attempt to get the
corresponding server, located in either the controller itself or
externally, to lease the victim’s IP to the attacker. To achieve
this, the attacker first forges a DHCP Release message that
makes the victim’s IP address available for distribution by
the server. Then, the attacker tries to obtain this address
by flooding the network with DHCP Discover messages,
using random MAC addresses, until he is offered the victim’s
IP address. This flooding is necessary as it’s impossible to
determine when the requisite IP will be leased, especially
since some servers may offer unused addresses over recently
released ones. When the victim’s IP is offered, the attacker
can accept it with a corresponding DHCP Request message,
and if the network uses DHCP information, it now thinks
that the victim’s IP address is bound to the MAC present in
the Discover request. Furthermore, any host name associated
with that IP address will transitively be associated with that
MAC address.

The authors also talk about a ’Flow Poisoning’ phase,
though it seems to be an addendum to the previous phase.
It’s used in the case where the DHCP server attempts to
verify whether the IP address is still active before offering
it, such as by flooding a corresponding ARP request. This
action is recommended by the DHCP RFC [6], but not re-
quired. In particular, several open-source SDN controllers
that offer DHCP do not perform this check by default, such
as POX and ONOS. This portion of the attack would only
be relevant under these controllers only when an external
DHCP server is being used. If this verification was performed
by the controller, then it’s quite psosible that the attack as
a whole would not succeed, as it would require redirecting
traffic from the controller as opposed to another host.

The Flow Poisoning phase abuses an interesting race con-
dition, present only in SDNs: the flow rules installed on a
switch are not synchronized with the controller’s view of
the network. For example, in POX, when a rule is added to a
switch, it remains there for it’s timeout period. Even if the
controller’s view of the netwrok changes, the flow remains.
By forging a message from the DHCP server, the attacker
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Figure 1: Overview of Persona Hijacking Attack after
the forged DHCP Request was sent (omitted to reduce
clutter). Labels of steps are attached to tail of arrow
(except for step 6). The flow poisoning and DHCP dis-
covery messages are repeated until the server offers
the desired IP. The DHCP server be located in either
the controller or externally. For the steps of the attack,
an external one is used.

can set up a flow that directs output intended for the DHCP
server from the victim to the attacker. When the server does
send out the verification ARP, the victim’s response will be
redirected to the attacker, and the server will believe that
the victim is indeed no longer active.

The major difference between this and a similar attack in
a conventional network is the timing: in SDNs, the window
of opportunity is much larger. In a conventional network
that used learning switches, if this was attempted then the
attacker would have to set up the route after the DHCP
server’s verification ARP (otherwise the ARP would override
whatever the attacker sent), but before the victim sends back
a response. However, in an SDN, after establishing the flow,
it remains even as the verification passes through, and in
POX, this means at least 10 seconds of rerouting.

The complete attack, as I implemented it, including the
Flow Poisoning aspect, is presented in figure 1.

4 EXPERIMENTAL SETUP

I implemented this attack in two networks: one where the
DHCP server is located in the controller and one where the
DHCP server is an external server. Both of these scenarios
were set up using the Mininet simulator version 2.3.0d1 with
a POX controller. As mentioned previously, these experi-
ments were performed with POX in order to better verify
their applicability to another controller that was not used in
the original paper, which tested both ONOS and RYU. The
network topology, as seen in figure 1, simulated was similar

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

to the one used in the paper: three hosts, the DHCP server,
and the controller, all connected to a single switch. The hosts
represent the attacker, the victim, and a bystander that is
used to test whether it can contact the victim once the attack
is completed. The DHCP server can either be external or it
can be handled by the controller, which is the major distinc-
tion between the two scenarios. This alternate is represented
in figure 1 as dashed lines.

The first scenario that I tested was using the POX provided
DHCP server. As with ONOS, as tested in the original, POX’s
version of DHCP does not verify whether an IP address is
still live, even if it was recently released, before offering it.
This means that the flow poisoning aspect of the attack is
unnecessary for this scenario. To verify that the whole at-
tack finishes, it suffices to see if the attacker is able to get a
DHCEP offer for the victim’s IP address. However, to further
explore the type of network that can be affected by this type
of attack, I also differentiated how the network interacted
with the DHCP requests. In this scenario, I used the 12 learn-
ing switches provided by POX and a modified proxy ARP
application that would generate IP to MAC bindings based
on the DHCP lease events generated by the server.

The second scenario used a host that acted as a DHCP
server by running udhcpd from BusyBox v 1.27.2, the same
type used in the paper. While it is mostly intended for embed-
ded systems, it does provide a simple, easy to set-up variant.
Furthermore, it does try to verify whether an IP address is
still alive by sending a relevant ARP before offering the ad-
dress. This means that the flow poisoning is crucial to the
success of the attack. While the verification of the attack is
the same as in the other scenario (e.g. receive an offer for the
victim’s IP), the network uses the information in a different
way: it installs flows based on the IP address port mapping
learned by snooping on DHCP messages.

My flow poisoning phase in this scenario slightly differed
from that of the original’s. They had sent an ICMP ping with
the DHCP server’s MAC address to the victim as soon as
the DHCP offer was received by the attacker. I made two
modifications. The first is that instead of sending a ping, I
had to send an ARP packet. The provided POX 12 learning
switch controller installs flows based on the headers of sent
packets, so in order to redirect the verification ARP, I needed
to send a spoofed ARP. The other change is that I would send
the packet before every DHCP discovery message. This is
because the DHCP server would verify with the ARP before
sending the offer, so while the bandwidth required for this
attack inreased dramatically, it’s the only way that I could
see to accomplish it.

In each scenario, to verify the effects of the attack, pingAll
was run to check the connectivity of the victim with the
other hosts. This was done in both scenarios, as they used
two separate environments. It should be noted that this is
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separate from just looking at whether it succeeds, which is
determined by receiving the requiste offer.

All of the experiments were tested on a Google Cloud
instance that was running Ubuntu 18.04 with 1 virtual CPU
and 3.75 GB of memory. Scapy was used to generate the
forged DHCP packets.

5 RESULTS/DISCUSSION

For the first scneario, the Persona Hijacking Attack was
always a success: the attacker was always able to obtain
the victim’s IP address via the DHCP server. This itself isn’t
too surprising, as the DHCP server provided by the POX
controller is incredibly bare bones, and without the need
to use the flow race condition, there is nothing that would
prevent it from taking effect. On the other hand, the attack’s
effet were fairly inconsistent. The victim was only blackholed
50% of the time over the course of 12 trials.

I'm not entirely sure what causes this inconsistency, as
the switch has no flow rules associated with it by the time
this test occurs. However, I suspect that it is due to the order
that the pings are serviced. For instance, if those from the
victim reach the other hosts before any other ping starts,
then when the bystander sends their ping, they can store the
truth, and don’t need to send an ARP and get the poisoned
response. If not, the proxy ARP gives the hosts the attacker’s
MAC.

For the second scenario, everything worked smoothly: the
attacker would always be able to get the victim’s IP address
and this would always cause the victim to be blackholed, at
least in the runs that I have performed. Because POX uses
both an idle and a hard timeout when a flow rule expires
no matter what, it is possible that after the flow is installed
for the first time and the attack reaches a 30 second interval,
an ARP response from the victim can escape and reach the
server. While possible, it is unlikely as it requires that the
victim’s IP is being offered at a 30 second interval. My variant
of the attack is a bit easier to get it to work than the 90%
success of the paper’s, as it tries to ensure that the fake flow
is consistently up, though at a higher cost of messages sent.

While a certain amount of DHCP snooping and informa-
tion utilization is expected to make this attack do anything,
it is interesting to see how much of a difference where this
info is being used makes. The authors discuss how this attack
has a severe impact when DHCP information is being used
to manage forwarding rules, as done in the second scenario,
so it is reassuring to see that even when this info is not be-
ing used to such a deterministic effect it is able to have an
impact.

While this attack is not overly complex, it does demon-
strate the core aspects for binding attacks that the authors
identify in current SDNs, as mentioned in the introduction:
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the use of a central controller, flow consistency, and software.
The central controller is what enables this type of attack: it
provides a single point that, if tampered with, can affect the
entire network. For instance, in a traditional network ARPs,
and thus attacks that use them, are localized to a particu-
lar subnet, bounded by the routers (to my understanding,
router’s should not broadcast ARPs). However, in an SDN
this restriction may not exist. Once an attack like Persona Hi-
jacking is able to poison the controller’s view of the network,
it can affect all routing that it is involved with, e.g. proxy
ARP or proactive routing. However, this all depends on how
the network is set up, for it is very easy to construct a net-
work where each subnet is governed by its own controller,
thereby removing this type of issue.

This attack does demonstrate the weakness of flow in-
consistency between the controller’s and the switch’s view.
Without the flow poisoning aspect of the attack, the second
scenario would be unable to take place; indeed, to be safe, I
ran the simulation without the attacker forging the server’s
ARP and it would invaraibaly fail. This inconsistency is what
really made Tme interested in this type of attack, and while
it is better explored in [15], this provides a simple example
of how it can be abused. Furthmore, conventional networks
don’t have to deal with this type of issue nearly as much, as
in standard POX, a fake flow can persist for up to 30 seconds,
even if the controller was tricked then realized its error, as
it’s probably not going to delete the flow.

The last major issue is what they refer to the use of "bare-
metal switches’, but I feel is more apt to say that SDN is based
on software. Like any software, it can be exploited unless
defenses are put into place. Software offers more freedom
and flexibility, but with that comes the ability to easily miss
something. Before, being able to buy a switch was tanta-
mount to having certain security standards in place. How-
ever, with SDNs, especially if using open source, then even
simple things like ways to protect against ARP poisoning
may not be present (or a simple ARP to verify an unused
IP before sending a DHCP offer). Saying that, it’s unclear
as to how much people would rely on the vanilla software
provided, especially when something like the POX DHCP
server explicitly states how bare-bones it is.

6 LIMITATIONS/WEAKNESSES

One of the major limitations of this work is not having a firm
understanding of the architecture of typical SDNs. While
there are certainly papers that help understand certain as-
pects of how things should be done, the sheer flexibility of
SDNis offer many choices that seem plausible, but are hardly
used. Indeed, it is quite possible that even if a paper described
how something ought to be done does not mean that it is
actually done in practice. With a better understanding of
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how SDNs are used in practice, I would be able to better
tailor the experiments to see how well the attack could work
in practice.

Another weakness is the lack of experiments performed
to test how different network conditions could affect the
efficacy of these attacks. This is due to things taking longer
than I had expected, particularly with the slight intricacies in
putting everything together, such as the difference required
between a DHCP discovery for a controller based server and
an external one.

Going along with the above weakness, the scale of the
experiments is one. While the size of the network topology
does mirror that used in the paper, it does not fully explore
how this type of attack could functoin in an actual network,
nor it does it help to demonstrate the importance of the
network-wide coverage of such an attack versus that of the
localized variant (e.g. akin to ARP poisoning) as much as it
could.

7 FUTURE WORK

Some future work that can be done to further explore the
ideas in this paper include varying the conditions of the
servers to analyze how much they can impact the attack.
In particular, it would be interesting to see the impact of if
there is a high turnover of IP addresses (such as in a public
place), and thus a lot of messages coming from the DHCP
server, on the success rate of the flow poisoning attack. One
expect it to drop as flows for the server would be consistently
installed, but if aggressive enough, the flow poisoning might
be able to prevail. In addition to these types of experiments,
it would be really interesting to see if it is possible to analyze
analagous attacks in conventional networks to further drive
the difference home. While performing a live experiment
would be particularly insgihtful, simulations could suffice.
Other future work could be getting to the part of the pa-
per that I would have liked to explore if given a lot more
time: that is the defense. Having an open source version of
this type of defense could be helpful in understanding how
authentication can be better performed in SDN.

8 CODE

The code written for this experiment and instructions to run
it can be found at:
https://github.com/kovacswc/pa3.
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